
electronics

Article

Parallel K-Means Clustering for Brain Cancer
Detection Using Hyperspectral Images

Emanuele Torti 1,* , Giordana Florimbi 1 , Francesca Castelli 1, Samuel Ortega 2 ,
Himar Fabelo 2 , Gustavo Marrero Callicó 2 , Margarita Marrero-Martin 2 and
Francesco Leporati 1

1 Department of Electrical, Computer and Biomedical Engineering, University of Pavia, I-27100 Pavia, Italy;
giordana.florimbi01@ateneopv.it (G.F.); francesca.castelli02@ateneopv.it (F.C.);
francesco.leporati@unipv.it (F.L.)

2 Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC),
35017 Las Palmas de Gran Canaria, Spain; sortega@iuma.ulpgc.es (S.O.); hfabelo@iuma.ulpgc.es (H.F.);
gustavo@iuma.ulpgc.es (G.M.C.); margarita@iuma.ulpgc.es (M.M.-M.)

* Correspondence: emanuele.torti@unipv.it; Tel.: +39-0382-985678

Received: 9 October 2018; Accepted: 26 October 2018; Published: 30 October 2018
����������
�������

Abstract: The precise delineation of brain cancer is a crucial task during surgery. There are several
techniques employed during surgical procedures to guide neurosurgeons in the tumor resection.
However, hyperspectral imaging (HSI) is a promising non-invasive and non-ionizing imaging
technique that could improve and complement the currently used methods. The HypErspectraL
Imaging Cancer Detection (HELICoiD) European project has addressed the development of a
methodology for tumor tissue detection and delineation exploiting HSI techniques. In this approach,
the K-means algorithm emerged in the delimitation of tumor borders, which is of crucial importance.
The main drawback is the computational complexity of this algorithm. This paper describes the
development of the K-means clustering algorithm on different parallel architectures, in order
to provide real-time processing during surgical procedures. This algorithm will generate an
unsupervised segmentation map that, combined with a supervised classification map, will offer
guidance to the neurosurgeon during the tumor resection task. We present parallel K-means clustering
based on OpenMP, CUDA and OpenCL paradigms. These algorithms have been validated through
an in-vivo hyperspectral human brain image database. Experimental results show that the CUDA
version can achieve a speed-up of ~150× with respect to a sequential processing. The remarkable
result obtained in this paper makes possible the development of a real-time classification system.

Keywords: Graphics Processing Units (GPUs); CUDA; OpenMP; OpenCL; K-means; brain cancer
detection; hyperspectral imaging; unsupervised clustering

1. Introduction

One of the most diffused types of cancer is the brain tumor, which has an estimated incidence
of 3.4 per 100, 000 subjects [1]. There are different types of brain tumors; the most common one
concerns the glial cells of the brain and is called glioma. It accounts from the 30% to the 50% of the
cases. In particular, in the 85% of these cases, it is a malignant tumor called glioblastoma. Moreover,
these kind of gliomas are characterized by fast-growing invasiveness, which is locally very aggressive,
in most cases unicentric and rarely metastasizing [2].

Typically, the first diagnosis is performed through the Magnetic Resonance Imaging (MRI)
and the Computed Tomography (CT). Those techniques are capable to highlight possible lesions.
However, it is not always possible to use them, since they can, for example, make interference with

Electronics 2018, 7, 283; doi:10.3390/electronics7110283 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-8437-8227
https://orcid.org/0000-0003-1062-3044
https://orcid.org/0000-0002-7519-954X
https://orcid.org/0000-0002-9794-490X
https://orcid.org/0000-0002-3784-5504
http://dx.doi.org/10.3390/electronics7110283
http://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/7/11/283?type=check_update&version=2

Electronics 2018, 7, 283 2 of 19

pacemakers or other implantable devices. Moreover, the certainty of the diagnosis only comes from
the histological and pathological analyses, which require samples of the tissue. In order to obtain this
tissue, an excisional biopsy is necessary, which consists in the removal of tissue from the living body
through surgical cutting. It is important to notice that all those approaches have some disadvantages;
in particular they are not capable of providing a real-time response and, most important, they are
invasive and/or ionizing.

The clinical practice for brain cancers is the tumor resection, which can cure the lowest grade
tumors and prolongs the life of the patient in the most aggressive cases. The main issue about this
approach is the inaccuracy of the human eye in distinguishing between healthy tissue and cancer.
This is because the cancer often infiltrates and diffuses into the surrounding healthy tissue and this is
particularly critical for brain cancers. As a consequence, the surgeon can unintentionally leave behind
tumor tissue during a surgery routine potentially causing tumor recurrence. On the other hand, if the
surgeon removes too much healthy tissue, a permanent disability to the patient can be provoked [3].

The HELICoiD European project aims at providing to the surgeon a system which can
accurately discriminate between tumor and healthy tissue in real-time during surgery routines [4,5].
Traditional imaging techniques feature a low grade of sensitivity and often cannot clearly determine
the tumor region and its boundaries. Therefore, the HELICoiD project exploits Hyperspectral Imaging
(HSI) techniques in order to solve this critical issue. Hyperspectral images (HS) can be acquired over
a wide range of the electromagnetic spectrum, from visible to near-infrared frequencies and beyond.
Hyperspectral sensors acquire the so-called HS cube where the spatial information is in the x-axis
and in the y-axis, while the spectral information is in the z-axis. Thus, a single hyperspectral pixel
can be seen as a mono-dimensional vector, which contains the spectral response across the different
wavelengths. Moreover, it is important to notice that the spectral information is strictly correlated
with the chemical composition of the specific material. It is possible to say that each hyperspectral
pixel contains the so-called spectral signature of a certain substance. Thus, different substances can be
distinguished by properly analyzing those images [6].

A previous study [4,7] proposed a processing chain for hyperspectral image analysis acquired
during brain surgery. The framework developed in this work is depicted in Figure 1.

Figure 1. Hyperspectral brain cancer detection algorithm proposed in [7]. After acquiring (A) and
pre-processing the image, the system performs a supervised classification through Principal Component
Analysis (PCA) (B), Support Vector Machine (SVM) (C) and K-Nearest Neighbor (KNN) (D). Moreover,
it generates a segmentation map through the K-means (E). The (D,E) maps are merged using the
majority voting (F).

First, the acquired HS cube (Figure 1A) is pre-processed in order to perform a radiometric
calibration, reduce the noise and the dimensionality of the HS image and normalize it. After this

Electronics 2018, 7, 283 3 of 19

preparatory step, the image is analyzed using the supervised and unsupervised classification.
The former is performed exploiting the Principal Component Analysis (PCA), the Support Vector
Machine (SVM) and the K-Nearest Neighbor (KNN). The KNN filters the spatial information given
by the PCA (Figure 1B) and the classification map generated by the SVM (Figure 1C). Its output
(Figure 1D) is a map where tissues are displayed with different colors representing the associated
classes. The unsupervised classification is based on the K-means algorithm. Despite the supervised
classification output, the unsupervised result is a segmentation map (Figure 1E), whose clusters
are semantically meaningless. However, the K-means provides a good delimitation of the different
areas present in the scene. Since the goal of the system is to accurately delineate the tumor borders,
the K-means plays a crucial role for its ability to clearly separate different areas. For these reasons, it is
important to merge the two outputs in order to exploit the benefits of the two approaches. The majority
voting provides the final output combining the supervised and unsupervised classifications (Figure 1F).

While the PCA, the SVM and the KNN filter are executed through a fixed number of steps,
the K-means algorithm iterates until a certain condition is satisfied. In order to provide the real-time
classification during surgery, parallel computing is required, since the computational load of the
algorithms is extremely high. The other algorithms of this framework have been already developed
in parallel, in particular the SVM [8] and the KNN filtering [9] have been recently proposed in the
literature. Those works target Graphics Processing Units (GPUs) technology since the considered
algorithms have an intrinsically parallel structure. Previously, other parallel technologies have been
evaluated in order to provide faster implementations of the PCA [10], SVM [11] and KNN [12]
compared to the serial ones. Despite this, in our work we choose to exploit GPUs since they
assure higher performance. Moreover, GPUs are going to be increasingly used for real-time image
processing [13–15], together with other scientific applications related to simulation and modeling or
machine learning in biomedical applications [16,17].

In this paper, we present the parallelization of the K-means algorithm on different parallel
architectures in order to evaluate which one is more suitable for real-time processing. In particular,
we consider multi-core CPUs through the OpenMP API and the GPU technology using NVIDIA CUDA
framework. We also propose OpenCL-based implementations in order to address code portability.

In other words, the work performed allows identifying the best suitable parallel approach
between one that could be more appealing since it requires low programming effort and another
one more efficient but also more demanding in terms of optimization and tuning. A tool that allows
intra-architectures portability (OpenCL) was also considered but due to its lower performance it is not
competitive with the other two approaches.

The paper is organized as follows: Section 2 describes the K-means algorithm for hyperspectral
images, while Section 3 details the different parallel versions. Section 4 contains the experimental
results and their discussion, making comparisons between the different approaches described in this
paper. Section 5 concludes the papers and addresses some possible future research lines.

2. K-Means Algorithm for Hyperspectral Images

As already said, the K-means algorithm, unlike the other ones of the hyperspectral brain cancer
detection algorithm, is not performed through a fixed number of steps. It performs an unsupervised
learning since no previous knowledge of the data is needed. The algorithm separates the input data
into K different clusters with a K value fixed a priori. Data are grouped together on the basis of
feature similarity. The first step of the algorithm is the definition of K centroids, one for each cluster.
Using those centroids, a first grouping is performed on the basis of the distance of each point to the
centroids. A point is associate to the cluster represented by the nearest centroid. At this moment,
each k centroid is updated as the baricenter of the group it represents. This process iterates until the
difference between the centroids of two consecutive iterations are smaller than a fixed threshold or if
the maximum number of iterations is reached.

Electronics 2018, 7, 283 4 of 19

The pseudo-code of the K-means algorithm is shown in Algorithm 1, where Y indicates a
hyperspectral image made up of N pixels and L bands. Therefore, the hyperspectral image can
be seen as an N × L matrix. The number of clusters to produce is determined by K, the threshold error
by min_error and the maximum number of iterations by max_iter. The K-means algorithm produces as a
result a K× L array containing the centroids, which will be referred as cluster_centroids in Algorithm 1
and an N-dimensional array containing the label of the cluster assigned to each pixel. This array is
denoted by assigned_cluster.

Algorithm 1 K-means
Input: Y, K, min_error, max_iter

1: Pseudo-random initialization of cluster_centroids

2: Initialize previous_centroids at 0 . previous_centroids is an K× L array

3: n_iter← 0 . initialize the iteration counter to 0

4: Initialize actual_error with a huge value

5: while actual_error > min_error and n_iter < max_iter do
6: for i:=1 to N do
7: Initialize centroid_distances to 0 . centroid_distances is a K-dimensional array

8: for j:=1 to K do
9: centroid_distancej ← distance between the j-th centroid and the i-th pixel

10: end for
11: assigend_clusteri ← index of min centroid_distance

12: end for
13: previous_centroids← cluster_centroids

14: update cluster_centroids

15: actual_error← ∑K
i=1 ∑L

j=1|previous_centroidsi,j−cluster_centroidsi,j|
K·L

16: n_iter← n_iter+ 1

17: end while

Output: assigned_cluster, cluster_centroids

In Algorithm 1, lines 1 and 2 contain the initialization of the variables. In particular,
cluster_centroids is initialized with K different hyperspectral pixels pseudo-randomly chosen from
the input image Y. The variable actual_error is initialized with a huge value in order to ensure that
the main loop of the algorithm (from line 5 to 17) is performed at least one time. Inside this main
loop there are two for loops that iterate over the number of pixels N and the number of clusters K
(lines from 6 to 12). For each pixel, a temporary array centroid_distances is set to 0, used for storing the
distances between the considered hyperspectral pixel and the centroids. The distance metric used for
hyperspectral pixels is usually the Spectral Angle (SA) which is defined as:

SA = θ(x, y) = cos−1

 ∑L
h=1 xhyh(

∑L
h=1 x2

h

)1/2 (
∑L

h=1 y2
h

)1/2

 (1)

where x and y are the spectral vectors and xh and yh represent the response of the h-th band of x and y
respectively, being L the number of bands.

The label assigned to the i-th pixel corresponds to the group represented by the centroid with the
minimum SA value, as shown in line 11. This phase is repeated for each pixel.

After these steps, the centroids used for the SAs computation are stored in the previous_centroids
array. Successively, the centroids are updated by computing the barycenter of each group that is

Electronics 2018, 7, 283 5 of 19

computing the mean value, for each band, of the pixels belonging to the group. Using the updated
centroids and the previous ones, it is possible to evaluate the variation from the previous iteration.
It represents how much the centroids have changed and it can be used as a stopping criterion when
these variations become small (line 15). The last step of the while loop is the increment of the n_iter
variable, used for controlling the maximum number of iterations performed by the algorithm.

The next section describes the serial and the parallel versions of this algorithm that we developed
using different parallel approaches, together with a code profiling carried out in order to identify the
heaviest code parts from the computational point of view.

3. Parallel K-Means Implementations

First, we developed a serial version of the K-mean algorithm written in C code. It serves both as
reference for validating the results of the parallel implementations and for performing a careful code
profiling needed to identify the most complex code parts. The numerical representation used is the
IEEE-754 floating-point single precision.

3.1. Serial Code Profiling

The code profiling was performed using a dataset formed by real HS images and assuming
K = 24, min_error = 10−3 and max_iter = 50. This K value was stablished during the development of
the HS brain cancer algorithm presented in [7]. Using this configuration, the execution of the algorithm
never reached the maximum number of iterations. The characteristics of the dataset are shown in
Table 1, while Figure 2 shows the RGB representation of the images.

Image 5 Image 6Image 4

Image 2Image 1 Image 3

Figure 2. RGB representations of each hyperspectral cube of the brain cancer dataset. The yellow line
represents the tumor location identified by the neurosurgeon.

Electronics 2018, 7, 283 6 of 19

Table 1. Dataset characteristics.

Image ID # of Rows # of Columns Total # of Pixels # of Bands Size (MB)

Image 1 329 379 124,691 128 60.88
Image 2 493 376 185,368 128 90.51
Image 3 402 472 189,744 128 92.65
Image 4 496 442 219,232 128 107.05
Image 5 548 459 251,532 128 122.82
Image 6 552 479 264,408 128 129.11

The profiling highlighted that the heaviest code parts are the computation of distances, which are
evaluated between each hyperspectral pixel and each centroid. In the considered cases, the for loops
of lines 6–12 (Algorithm 1) take from 94 to 98% of the time for the smallest and the biggest image,
respectively. Notice that these computations can be performed in parallel, since there is no dependency
between the evaluations needed by a single pixel and the others.

3.2. OpenMP Algorithms

OpenMP (https://www.openmp.org/) is a parallel programming framework capable of
exploiting multi-core architectures. It is based on a set of simple #pragma statements used for code
annotations that indicates to the compiler which parts should be parallelized. An example is the
#pragma omp parallel for statement, which generates a set of parallel threads and assigns to each
one a group of iterations. It is also possible to indicate to the compiler which variables should
be shared among the threads and which ones are private through the shared and private clauses,
respectively. Finally, it is possible to choose the scheduling algorithm to use through the schedule option.
The supported scheduling algorithms are static, dynamic and guided. In the first case, the number
of iterations are equally or as equal as possible subdivided among the threads. Thus, each thread
performs the same number of iterations. The dynamic scheduling uses the internal work queue to give
a chunk-sized block of loop iterations to each thread. When a thread finishes, it retrieves the next block
of loop iterations from the top of the work queue. The default value of the chunk size is 1, but it is
possible to change it by a proper command. Finally, the guided scheduling is similar to the dynamic
one, but the chunk size starts from a big value and then decreases in order to manage load imbalance
between different iterations.

We developed two different OpenMP versions of the K-means algorithm. The first one parallelizes
the for loop which iterates over the hyperspectral pixels (line 6, Algorithm 1). In this way, at each
iteration of the main while loop, a set of parallel threads are generated and each one computes the SA
between a certain group of pixels and the centroids. All the other operations are performed in a serial
way. The shared arrays are the cluster_centroids and the input image Y, while all the other variables
are private. In this version, the parallel region is created and destroyed at each iteration of the main
while loop.

Concerning the second implementation, the majority of the operations are performed in parallel.
The operations that continue to be performed sequentially are the actual_error computation and the
increment of n_iter, at lines 15 and 16 of Algorithm 1, respectively. A barrier must be placed after the
actual_error computation, in order to prevent the other threads to evaluate the while condition with an
inconsistent old value. In this case, also the centroid_distance is declared as shared. Notice that, in this
version, the parallel region is created and destroyed only once, at the beginning and at the end of the
main while loop. However, in this case, it is necessary to introduce a barrier in order to ensure the
correct execution of the program.

https://www.openmp.org/

Electronics 2018, 7, 283 7 of 19

3.3. CUDA Algorithms

CUDA (https://developer.nvidia.com/cuda-zone) is a parallel programming framework
developed by NVIDIA to exploit GPU computing power. In this framework, the GPU, also called device,
is seen as a parallel co-processor, with separated address space with respect to the CPU, also called
host. The execution of a CUDA program always begins from the host, using a serial thread. When it
is necessary to perform a parallel operation, the host allocates memory on the GPU and transfers
the data to that memory. Those two operations are performed through the cudaFree and cudaMemcpy
routines. At this point, the GPU generates thousands of parallel threads, which cooperate in order
to perform the desired computation. The function performed by the GPU is called kernel. When the
kernel execution ends, the CPU retrieves the results from the GPU memory through memory transfer
(cudaMemcpy routine). The GPU memory is then deallocated by the cudaFree routine. The execution
proceeds then in a serial way.

The threads generated by the GPU are grouped into blocks, which form the grid. The blocks can be
mono-dimensional, bi-dimensional, or three-dimensional and the number of threads within a block
can be chosen by the programmer.

The typical bottleneck of GPU applications is represented by memory transfers. Therefore, it is
necessary to properly manage them in order to achieve the best performance.

In this work, we present three different parallel versions of the K-means algorithm. The first
one is based on the parallelization of the distance computation. In this case, the thread performs the
computation of the distance between the assigned pixel and the K centroids. This kernel takes as inputs
the hyperspectral image Y and the K centroids stored in the cluster_centroids variable. It produces as
output a N × K array which contains the distances between each pixel and each centroid. In particular,
the i-th row and the j-th column of this array store the distance between the i-th pixel and the j-th
centroid. Therefore, it is necessary to add a supplementary temporary array (N × K) with respect to
the serial implementation. The schematization of this implementation is shown in Figure 3.

The hyperspectral image Y is copied to the GPU memory only once, before the beginning of
the main while loop. This has been done since the image is not modified by the algorithm. At every
iteration, the only data transferred to the GPU is the matrix containing the centroids, that is used,
together with the image, to compute the distances, stored in a temporary matrix (distances_array in
Figure 3). Data are sent back to the host, which computes the minimum distance for each pixel
(i.e., each row of this matrix) and then updates the centroids and computes the error in order to
evaluate convergence.

The second CUDA version has been developed in order to avoid the limit of the amount of
data transferred during each iteration of the main while loop. Therefore, the minimum distance
computations, the centroids update, and the error evaluation have been performed on the GPU side.
Since the distances are stored in an N × K array, the kernel used to find the index of the minimum
distance is executed by N threads. The i-th thread performs a for loop in order to evaluate the minimum
distance of the i-th centroid. In other words, this task has been parallelized by assigning to each thread
the computation of the minimum distance for one pixel. The index of the minimum distance is stored
in the assigned_cluster array, which contains the classification obtained at the current iteration of
the main loop. The update of the centroids has been performed by a simple kernel where the i-th
thread computes the update of the i-th centroid. Concerning the error evaluation, it is possible to
use the highly optimized routines offered by the CUBLAS library. In particular, it is possible to
use the cublasSasum routine, which calculates the sum of the absolute values stored in the input
array. Before activating this kernel the element-wise difference between the values stored in the
actual_centroids and previous_centroids arrays must be computed. This is done by a kernel in which a
single thread computes the difference between two elements. The sum computed by the cublasSasum
routine is returned to the host, which performs the final division needed for error evaluation and
increments the number of iterations. The schematization of this CUDA version is shown in Figure 4.

https://developer.nvidia.com/cuda-zone

Electronics 2018, 7, 283 8 of 19

It is important to notice that, in this version, only a single precision floating-point value is
transferred at each iteration of the main loop. However, an additional data transfer at the end of the
main loop must be performed, since it is necessary to retrieve the assigned_cluster that contains the
hyperspectral pixel classification.

The last CUDA version developed in this work exploits the dynamic parallelism introduced by
CUDA 6.0. This allows to use a thread inside a kernel in order to generate a grid which executes
another kernel. In the proposed case, it is possible to take advantage of dynamic parallelism by
moving the main while loop inside the kernel. In other words, this version is made up of a single
kernel executed on the GPU by a single thread, which manages the activation of the kernels already
described for the second CUDA version. In this case, the only memory transfers are performed before
(the hyperspectral image Y) and after the main loop (the classified pixels assigned_cluster). However,
it is worth noting that the activation of a kernel from another kernel requires a launching overhead,
which will be discussed in Section 4.

CPU GPU

START

END

Algorithm

initialization

actual_error > min_error

and

n_iter < max_iter

False

Copy Y to

the GPU
CudaMemcpy Y

Copy cluster_centroids

to the GPU
CudaMemcpy cluster_centroids

Compute distances

distances_array Copy results to the CPUCudaMemcpy

Compute minimum

for each pixel

Update cluster_centroids

and assigned_cluster

True

Update actual_error and n_iter

Figure 3. Schematization of the first GPU implementation. The operations are in white boxes, while data
are in yellow boxes.

Electronics 2018, 7, 283 9 of 19

CPU GPU

START

END

Algorithm

initialization

actual_error > min_error

and

n_iter < max_iter

False

Copy Y to

the GPU
CudaMemcpy Y

Compute distances

assigned_cluster

CudaMemcpy

Update cluster_centroids

and assigned_cluster

True

Update n_iter

Find minimum

sum

actual_error = sum/(K*L)

Copy assigned_custer

from the GPU

CudaMemcpy

Compute sum

Figure 4. Schematization of the second GPU implementation. The operations are in white boxes,
while data are in yellow boxes.

3.4. OpenCL Algorithms

OpenCL (https://www.khronos.org/opencl/) is a parallel programming framework maintained
by the Khronos Group which addresses the issue of portability between devices from different vendors.
It assumes a model similar to CUDA, with the difference that the blocks are called working groups
and the threads are called working items. The computing platforms that can be programmed using
OpenCL range from multi-core CPUs to manycore GPU and finally to Field Programmable Gate
Arrays (FPGAs). Similarly to CUDA, this paradigm assumes that the computing platform is made

https://www.khronos.org/opencl/

Electronics 2018, 7, 283 10 of 19

up of a serial processor, called host, and one or more parallel devices. At the beginning of an OpenCL
application, it is important to correctly initialize the execution context. This has the effect of pointing
out to the OpenCL environment which devices will be used in the case that there are more than one
OpenCL compatible boards installed on the same machine. Data that must be processed by the devices
are stored into buffers, which can be of different types, depending on the targeting devices of the
implementation. In particular, considering a generic GPU as a device, a buffer is a portion of the device
memory where data are copied from the host memory. On the other hand, if we consider as a device a
multi-core CPU or an integrated GPU which shared the RAM memory with the host, the buffer is only
a reference to the RAM portion where data are stored. Notice that, in this last case, there will be no data
transfers between host and device since the RAM address space is shared. An important difference
when compared with CUDA is the absence of dynamic parallelism, thus, it is not possible to activate
a kernel from another one. Therefore, we only developed two versions based on OpenCL. The first
one performs the parallel computation of the distances on the device while the other operations are
performed on the host. The second version performs all the operations inside the main while loop on
the device, as we implemented in the second CUDA version already described. However, it is not
possible to exploit the CUBLAS library, since it is strictly correlated with the adoption of NVIDIA
devices. Therefore, we exploit the clBLAS library which is very similar to CUBLAS. In particular,
we use the clblasSasum routine which performs the summation of all the elements stored in a given
array. All the other operations have been performed as described for the second CUDA version.

4. Experimental Results and Discussion

All the parallel implementations have been tested with the hyperspectral dataset already used
for serial code profiling and shown in Table 1. The images have been employed both to evaluate the
processing times of the different versions and to validate the results. All the parallel versions have
obtained the same results than the serial one when removing the random initialization. In other words,
if the serial and the parallel versions have the same initialization, they perform the same number of
iterations and produce the same outputs.

To graphically analyze the classification results, Figure 5A–F shows the RGB images where the
tumor is highlighted. Moreover, Figure 5G–L depicts the supervised classification maps where the
tumor is indicated with the red color, the healthy tissue in green, the hypervascularized in blue
and the background in black. Images in Figure 5M–R are the segmentation maps produced by the
K-means algorithm. As can be seen from the images, this algorithm is capable of distinguishing blood
vessels, different tissue regions and the ring markers (used by neurosurgeons to label the image for the
supervised classification). As said before, the algorithm defines with high accuracy the boundaries
of each area, but the clusters do not correspond to specific classes. Moreover, colors are randomly
assigned to each cluster. For this reason, it is crucial to combine this segmentation map with the
supervised classification result in obtain the final output, shown in Figure 5S–X.

4.1. OpenMP Performance Evaluation

First, for each OpenMP implementation, several tests have been conducted in order to establish
the optimal number of threads to be generated, using the biggest image (Image 6). These tests have
been performed on an Intel i7 6700 processor working at 3.40 GHz equipped with 32 GB of RAM.
The codes have been compiled with the vc140 compiler, using compilation options to indicate the
target architecture (i.e., x64 processor) and to maximize the processing speed. The processing times
have been measured through the omp_get_wtime routine. The obtained results are shown in Figure 6.

Electronics 2018, 7, 283 11 of 19

Image 5

Image 6

Image 4

Image 2

Image 1

Image 3

A

B

D

C

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Figure 5. RGB representations of the dataset (A–F), supervised classification maps (G–L),
segmentation maps (M–R), final output (S–X).

Electronics 2018, 7, 283 12 of 19

0 4 8 12 16 20 24 28
110

120

130

140

150

160

170

0 2 4 6 8 10 12 14 16
125

130

135

140

145

150

155

160

Number of threads Number of threads

P
ro

c
e
s
s
in

g
 t

im
e
 [

s
]

P
ro

c
e
s
s
in

g
 t

im
e
 [

s
]

0 4 8 12 16 20 24 28 0 2 4 8 106 12 14 16
110

120

130

140

150

160

170

125

130

135

140

145

150

155

160
a b

Figure 6. Processing time for Image 6 with respect to the number of threads for the first (a) and for the
second (b) OpenMP version.

It is important to highlight that the experiments have been conducted with the same initialization,
and they provide the same number of iterations and the same classification results. For the first
OpenMP implementation, we measured the processing time from 4 to 28 threads. We did not test the
application with more threads since the processing time begins to significantly grow after 28 threads.
By analyzing Figure 6a, it is possible to see that the optimal number of threads for the first OpenMP
version is 16. These measures have also been performed for the second OpenMP version, but in this
case the maximum number of threads tested was 12 since the processing times begins to grow. In this
case, as highlighted by Figure 6b, the optimal number of threads is 8.

After establishing the optimal number of threads, we tested the two OpenMP versions on the
entire dataset presented in Table 1. In order to allow a direct comparison between the serial and the
parallel versions, we initialized the algorithm with the same values for a given image. The obtained
results, together with the speed-up values, are reported in Table 2, where OpenMPv1 indicates the first
version (the parallelization of the distance metric computation), while OpenMPv2 indicates the second
one (the whole main loop parallelized). Those results, together with the others obtained by the CUDA
and OpenCL versions, will be discussed in Section 4.4.

Table 2. Comparison between the serial and the OpenMP versions of the algorithm. The speed-up is
reported between brackets.

Image ID # of Iterations Serial [s] OpenMPv1 [s] OpenMPv2 [s]

Image 1 32 272.20 73.18 (3.72×) 75.88 (3.59×)
Image 2 13 162.37 44.42 (3.65×) 45.80 (3.55×)
Image 3 23 289.64 77.81 (3.72×) 81.35 (3.56×)
Image 4 10 151.50 40.98 (3.70×) 43.42 (3.49×)
Image 5 13 214.52 59.00 (3.64×) 63.09 (3.40×)
Image 6 25 465.51 118.31 (3.93×) 136.99 (3.40×)

4.2. CUDA Performance Evaluation

The three CUDA versions have been compiled using the NVIDIA nvcc compiler, which is part of
the CUDA 9.0 environment. Compilation options have been chosen in order to maximize the execution
speed. The tests have been conducted using two different GPUs. The first one is a NVIDIA Tesla
K40 GPU equipped with 2880 CUDA cores working at 750 MHz and with 12 GB of DDR5 RAM.

Electronics 2018, 7, 283 13 of 19

It is based on the Kepler architecture that does not have a graphical output port since it is optimized
for scientific computations. The second GPU is a NVIDIA GTX 1060 equipped with 1152 CUDA
cores working at 1.75 GHz and with 3 GB of DDR5 RAM. This GPU is more recent than the first
one and it is based on the Pascal architecture, having a graphical output port. In order to take full
advantage of the specific architecture of each GPU, we indicate to the compiler which is the target
micro-architecture. Specifically, we used the options sm_35 and compute_35 for the Tesla K40 GPU and
the options sm_60 and compute_60 for the GTX 1060, where the values 35 and 60 represent the Kepler
and the Pascal architecture, respectively. The results obtained using the Tesla K40 GPU are reported in
Table 3, while the results obtained by the GTX 1060 GPU are reported in Table 4.

Table 3. Comparison between the serial and the CUDA versions of the algorithm on a Tesla K40 GPU.
The speed-up is reported between brackets.

Image ID # of Iterations Serial [s] CUDAv1 [s] CUDAv2 [s] CUDAv3 [s]

Image 1 32 272.20 87.48 (3.11×) 4.52 (60.22×) 4.87 (55.89×)
Image 2 13 162.37 54.51 (2.98×) 2.97 (54.67×) 3.34 (48.61×)
Image 3 23 289.64 100.67 (2.88×) 4.99 (58.04×) 5.12 (56.57×)
Image 4 10 151.50 56.41 (2.69×) 2.96 (51.18×) 3.47 (43.66×)
Image 5 13 214.52 79.74 (2.69×) 3.99 (53.76×) 4.14 (51.82×)
Image 6 25 465.51 159.77 (2.91×) 7.45 (62.48×) 7.83 (59.45×)

Table 4. Comparison between the serial and the CUDA versions of the algorithm on a GTX 1060 GPU.
The speed-up is reported between brackets.

Image ID # of Iterations Serial [s] CUDAv1 [s] CUDAv2 [s] CUDAv3 [s]

Image 1 32 272.20 80.84 (3.37×) 2.37 (114.85×) 4.21 (64.66×)
Image 2 13 162.37 44.54 (3.65×) 1.94 (83.70×) 2.93 (55.42×)
Image 3 23 289.64 98.61 (2.94×) 2.66 (108.89×) 2.96 (97.85×)
Image 4 10 151.50 52.47 (2.89×) 2.02 (75.00×) 3.25 (46.62×)
Image 5 13 214.52 75.00 (2.86×) 2.41 (89.01×) 3.48 (61.64×)
Image 6 25 465.61 147.50 (3.16×) 3.16 (147.34×) 3.69 (126.18×)

In both tables, CUDAv1 indicates the version where only the distance computation is computed
on the GPU, CUDAv2 indicates the version where all the operations are performed in parallel and,
finally, CUDAv3 indicates the version exploiting dynamic parallelism.

Concerning the GPU implementation, we also conducted a profiling using the NVIDIA Visual
Profiler. This tool allows to profile the code execution on GPU together with memory transfers, in order
to evaluate the efficiency of the implementation. Figure 7 shows the results obtained by profiling the
Image 1 (the most demanding one) processing on the GTX 1060 with the CUDAv1 (a) and CUDAv2 (b)
codes. Concerning the CUDAv2, in Figure 7b the different kernels executions percentage on the GPU
are detailed. Profiling of CUDAv3 is not shown since it is very similar to CUDAv2 as well as the code
profiling on the NVIDIA Tesla K40 GPU.

4.3. OpenCL Performance Evaluation

OpenCL codes have been compiled using vendor-specific compilers. In particular, the OpenCL
version without memory transfers have been tested on an Intel i7 6700 processor working at 3.40 GHz,
equipped with 32 GB of RAM and on an Intel HD Graphics 530 integrated GPU with 16 cores working
at 350 MHz. The integrated board shares the RAM with the CPU. Concerning the OpenCL version
which performs memory transfers, it has been tested on the NVIDIA GTX 1060 GPU. Results obtained
by the OpenCL versions are reported in Table 5.

Electronics 2018, 7, 283 14 of 19

99%

1%

Memory transfers

GPU computation

77%

22.5%

0.4% 0.1%

Compute distances

Centroids and cluster update

Find minimum
Compute sum

58% 42%

Memory transfers

GPU computation

a) CUDAv1 b) CUDAv2

Figure 7. Profiling of GPU versions on the NVIDIA GTX 1060 board for the CUDA v1 (a) and CUDA
v2 (b) versions.

Table 5. Comparison between the serial and the OpenCL versions of the algorithm. The speed-up is
reported between brackets.

Image ID # of Iterations Serial [s] Intel i7 [s] Intel HD 530 [s] GTX 1060 [s]

Image 1 32 272.20 74.13 (3.67×) 183.96 (1.48×) 57.61 (4.72×)
Image 2 13 162.37 44.32 (3.66×) 114.24 (1.42×) 35.61 (4.56×)
Image 3 23 289.64 79.52 (3.64×) 203.62 (1.42×) 63.75 (4.54×)
Image 4 10 151.50 40.52 (3.74×) 113.82 (1.33×) 35.36 (4.28×)
Image 5 13 214.52 59.92 (3.58×) 156.56 (1.37×) 47.03 (4.56×)
Image 6 25 465.51 121.59 (3.83×) 312.68 (1.49×) 93.65 (4.97×)

4.4. Comparisons and Discussion

The OpenMP version that offers the better results is the one where only the distance evaluations
are processed in parallel. In this version, a parallel region is created and then destroyed at every
iteration of the main loop, while in the second version the parallel region is created only once before
the beginning of the main loop and is destroyed after the end of the main loop. However, the second
version requires synchronization barriers between the threads, since there are operations that should
be performed sequentially to obtain correct results. As an example, the increment of the number of
iterations and the check of the conditions for repeating or not the main loop should be performed
by a single thread. This is a critical issue since the advantage of creating and destroying the parallel
region only once is thwarted by the synchronization bottleneck. The result analysis shows that the
processing times are very similar, but the processor manages better the first version (OpenMPv1).
Moreover, the speed-up values of the two versions are similar. Finally, it is important to highlight
that the considered processor is equipped with 4 physical cores and the obtained speed-up is always
greater than 3.5×. This means that the parallelization efficiency is close to the theoretical value.

Concerning the CUDA versions, by analyzing Tables 3 and 4, it is possible to observe that, for both
GPU boards, the first CUDA version (CUDAv1) performs worse than the OpenMP ones. The reason is
highlighted in Figure 7a, where the profiling results show that the memory transfers take about 42% of
the time and only the remaining 58% is used for the computation. This is the typical bottleneck of GPU
computing since the memory transfers are performed by the PCI-express external bus. The second
CUDA version (CUDAv2) is not affected by this issue since the amount of data transferred at each
main iteration is significantly lower than in the previous case. It is possible to parameterize the amount
of transferred data at each iteration for these two versions. In the first case (CUDAv1), the data
transferred is the distance_array matrix, which is made up of N × K elements represented in single

Electronics 2018, 7, 283 15 of 19

precision floating-point arithmetic, while in the second case (CUDAv2) only one single precision
floating-point value is copied back to the host. In the third case (CUDAv3), when dynamic parallelism
is used, there are no data transfers inside the main loop. Therefore the third CUDA version is the
one which transfers the minimum possible amount of data, but it does not perform better than the
second version. This is because the dynamic parallelism produces an overhead due to the GPU switch
between the main kernel and the subroutine kernel. This overhead affects every sub-kernel activation.
In this specific case, four different sub-kernels are activated at every iteration. This overhead is not
negligible and, as it can be seen form the results of Tables 3 and 4, it takes longer than the copy of a
single float value from device to host. In other words, the time needed by the GPU to manage the
generation of four sub-kernels (CUDAv3) is comparable with the time taken by a single value copy
from the host to the device memory (CUDAv2). Finally, for all the CUDA versions, the GTX 1060 board
performs better than the Tesla K40, even if the last board is optimized for scientific computations.
This is because the first board is equipped with a more recent architecture which has better CUDA
cores working at a higher frequency than the Tesla GPU.

The analysis of the OpenCL versions highlight that, considering the Intel i7, the processing times
are close to the OpenMP ones. For what concerns the Intel HD 530 integrated GPU, the performance is
very poor, and the speed-ups are negligible. This is probably due to the low-end integrated GPU with
a working frequency of 350 MHz and only 16 parallel processing elements. Therefore, it is not possible
to obtain a significant speed-up compared to the serial version. Comparing the OpenCL version and
the CUDA versions running on the GTX 1060 GPU, it is possible to notice that the OpenCL version
performs better than the CUDAv1, but is significantly slower than the other two CUDA versions.
These CUDA versions (CUDAv2 and CUDAv3) employ highly optimized routines, which exploits all
the hardware features of a GPU. Moreover, the CUDA versions have been compiled using compilation
options in order to produce an executable code which fully exploits the specific target architecture.
This is not possible in OpenCL since it targets portability between different devices as main feature.

We also performed a comparative study between the three best performing versions of the three
considered technologies in order to characterize how the speed-up varies with respect to the number
of clusters. In particular, we performed experiments using Image 6 and K values varying from 2
to 50. The speed-ups of the OpenMP, CUDA and OpenCL best versions with respect to the serial
implementation are shown in Figure 8 using a semi-logarithmic scale. It is possible to see that the
CUDA version has a speed-up that ranges from 10× to ~150× and from 12 clusters on it becomes
nearly constant. On the other hand, the solutions based on a multi-core processor have speed-ups that
are close to 4×.

In the literature, there are different works about parallel K-means.
Baramkar et al. [18] performed a review of different parallel GPU-based K-means, but the

considered works where focused only on general classification, without considering high data
dimensionality, which is the case explored in our work. Therefore it is hard to perform direct
comparisons with these works, which achieve very different speed-ups ranging from 11× to 220×.

Zechner et al. [19] proposed a parallel implementation of this algorithm using both CPU and
GPU. In particular, the GPU was only employed for distance computation, while centroids update
was left to the CPU. They classified an artificial dataset with two-dimensional elements ranging from
500 to 500, 000. The maximum speed-up achieved was 14×, lower than the one obtained in our work.
This is because the optimization proposed in [19] is only valid for low-dimensional data and cannot be
employed for classifying high-dimensional data such as hyperspectral images.

A similar approach is shown in [20,21], with the difference that also the clusters update has
been performed on the GPU. However, between the distance computation and centroids update they
performed host computation for updating each pixel label. This choice leads to a maximum speed-up
of 60 in both works, lower than our one, since we moved all the computation on the device side.

Electronics 2018, 7, 283 16 of 19

0 5 10 15 20 25 30 35 40 45 50

Number of clusters

100

101

102

103
P

ro
ce

ss
in

g
tim

es
 [s

]
OpenMPv1
CUDAv2
OpenCL GTX 1060

Figure 8. Speed-ups achieved by the three best parallel implementations (one for each evaluated
parallel technology) with respect to the number of clusters.

In [22], a GPU-based K-means algorithm is proposed, with a distance computation that is
evaluated through a simple Cartesian distance. Under this assumption, they classify 1,000,000 pixels
with 32 features in 1.15 s. In our case, the bigger image has 264,408 pixels, the features (i.e., the bands)
are 128 and it is processed in ~3.56 s. Moreover, the distance metric that we adopt (the spectral angle)
is more complex than the one proposed in [22].

Baydoun et al. [23] developed a parallel K-means for RGB images classification. They adopted as
metric a simple Cartesian distance and they parallelize only this computation, achieving a maximum
speed-up of ~25×. In this case, the metric and the data dimensionality are very different compared to
this work.

In [24], the K-means algorithm was modified to further reduce the distance computation.
The speed-up varies from 4× to 386×, but also, in this case, it is not possible to perform a direct
comparison since there are not enough details about the dataset composition. Finally, in [25],
the K-means algorithm was developed on GPU with the Cartesian distance. They adopt a modern GPU
with 1536 CUDA cores obtaining a maximum speed-up of 88×, which is very similar to our results.

Lutz et al. [26] proposed a parallel K-means implementation using an NVIDIA GTX 1080 GPU.
They perfomed only experiments producing four groups and no further details are given in the paper
about the dataset. They achieved a maximum speed-up of 18.5×which is nearly an order of magnitude
smaller than one of our implementations.

A comparative analysis similar to the one we conducted is reported in [27]. Authors exploited
GPUs, OpenMP, Message Passing Interface (MPI) and FPGAs. However, also in this case,
they considered only a dataset made up of 10-dimensional points, therefore the computational
complexity of the distance computation is lower than our one. On the other hand, the results were not
as good as our ones, since the maximum GPU speed-up achieved is ~60×. They also demonstrated
that the speed-up could reach a value up to 200× if the number of clusters to produce was significantly
increased (i.e., more than 2000 clusters), but a study of how this speed-up varied also with respect
to the data dimensionality were not carried out. Concerning OpenMP, the classification of 20,000
10-dimensionality points took ~3 s. Our smallest image is 6 times bigger than this one and with a
dimensionality 18 times greater than the one considered. Keeping this in mind, the performance of
our best OpenMP version is quite similar to this one. Finally, concerning the FPGA implementation,
experiments were reported only with a 17, 692 9-dimensionality dataset. Classification time is ~100 ms,
but, as stated in [27], the FPGA resources, especially memory banks, were not enough to process bigger
datasets. The authors of this work do not use external DDR memory, therefore, the FPGA performance
is limited due to this design choice.

Electronics 2018, 7, 283 17 of 19

The comparison between our work and the literature is summarized in Table 6.

Table 6. Comparison between the proposed work and the literature.

Paper Maximum Image Size Data Dimensionality Technology Speed-Up

[18] 2,000,000 8 GPU NVIDIA GTX 280 220
[19] 500,000 2 GPU NVIDIA 9600 GT 14
[20] 1,000,000 2 GPU NVIDIA 8800 GTX 60
[21] 15,052,800 3 4 × GPU NVIDIA GTX 750Ti 60
[22] 1,000,000 32 GPU NVIDIA GTX 280 N. A.
[23] 16,777,216 3 GPU NVIDIA Tesla C2050 25
[24] 245,057 4 GPU NVIDIA GeForce 210 386
[25] 500,000 16 GPU NVIDIA Quadro K5000 88
[26] N. A. N. A. GPU NVIDIA GTX 1080 18.5
[27] 20,000 10 2 × AMD Opteron quad-core 8
[27] 65,536 10 GPU NVIDIA Tesla 2050 60
[27] 17,692 9 Mitrion MVP FPGA Simulator N. A.

Our work 264,408 128 GPU NVIDIA GTX 1060 126

5. Conclusions

In this paper, we presented different parallel implementations of the K-means algorithm for
hyperspectral medical image clustering. In particular, we evaluated multi-core CPUs and manycore
GPUs through the OpenMP and CUDA frameworks, respectively. Moreover, we also addressed the
problem of code portability by developing OpenCL-based versions. We performed experiments with a
dataset made up of in-vivo hyperspectral human brain images. Those experiments validated the results
of all the proposed parallel implementations. Among them, CUDA achieved the better performance,
outperforming OpenMP implementations. The cost of the better performance is the parallelization
effort, which is significantly greater when working with CUDA. In fact, the development of the CUDA
versions required the development of custom kernels and ad-hoc memory transfer management,
while OpenMP only required code annotations with suitable pragmas. Code portability has also been
addressed with OpenCL. However, this technology is not yet competitive with OpenMP or CUDA,
achieving the worst results among the developed parallel applications. Moreover, OpenCL guarantees
portability among different devices, but, for obtaining the best performance from a given device, it is
necessary to tune the code with respect to specific hardware features. The comparison of the proposed
implementations shows that the best one is based on CUDA and executed on the GTX 1060 board,
achieving a maximum speed-up of ~125×. In particular, the best CUDA version performs all the
computations on the GPU without exploiting dynamic parallelism.

We also made comparisons with other recent works in the literature, that only in one case achieved
results comparable but not better than ours, except for the FPGA solution proposed in [27]. However,
FPGA memory constraint does not allow to process images with more than 17, 692 pixels. This limits
the use of this technology and, in particular, it makes FPGAs not suitable for our target application.

Summarizing, the proposed work confirms that the GPU technology is the best solution for these
class of problems, even when considering a data dimensionality bigger than the ones considered
before. It also highlights that the GPU algorithm has a good scalability with respect to the number
of clusters (K). Moreover, when considering high data dimensionality, the parallelization of the
distance computation is not enough, since also the centroids update, and the error computation can be
parallelized. This ensures a supplementary speed-up. Finally, the technological evolution of GPUs
offers increasing computing power at relatively low cost. In our case, a consumer GPU sold at about
$200 outperforms a more expensive Tesla K40 GPU (~$5000) of a previous generation, but optimized
for scientific computations.

In conclusion, this work provides an efficient GPU implementation of the K-means algorithm,
that will be included in the parallel version of the complete system already shown in Figure 1. Since the
K-means is one of the most computational demanding algorithms in the system, this remarkable result
is essential to satisfy the real-time constraint.

Electronics 2018, 7, 283 18 of 19

Future research will be focused on integrating this parallel algorithm in more complicated
classification frameworks, such as the one proposed in [5,7].

Author Contributions: E.T. performed the GPU implementations, the algorithms optimizations, designed and
performed experiments and wrote the manuscript. G.F. designed experiments and edited the manuscript. F.C.
performed the GPU implementations and experiments. S.O., H.F. performed the serial algorithm implementation
and edited the manuscript. G.M.C., M.M.-M., F.L. supervised the project and edited the manuscript.

Funding: This work has been supported in part by the Canary Islands Government through the ACIISI (Canarian
Agency for Research, Innovation and the Information Society), ITHACA project “Hyperspectral Identification
of Brain Tumors” under Grant Agreement ProID2017010164 and it has been partially supported also by the
Spanish Government and European Union (FEDER funds) as part of support program in the context of Distributed
HW/SW Platform for Intelligent Processing of Heterogeneous Sensor Data in Large Open Areas Surveillance
Applications (PLATINO) project, under contract TEC2017-86722-C4-1-R. Additionally, this work was completed
while Samuel Ortega was beneficiary of a pre-doctoral grant given by the “Agencia Canaria de Investigacion,
Innovacion y Sociedad de la Información (ACIISI)” of the “Conserjería de Economía, Industria, Comercio y
Conocimiento” of the “Gobierno de Canarias”, which is part-financed by the European Social Fund (FSE) (POC
2014–2020, Eje 3 Tema Prioritario 74(85%)). Finally, this work has been also supported in part by the 2016 PhD
Training Program for Research Staff of the University of Las Palmas de Gran Canaria.

Acknowledgments: The authors would like to thank NVIDIA Corporation for the donation of the NVIDIA Tesla
K40 GPU used for this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ferlay, J.; Soerjomataram, I.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.;
Bray, F. Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11; International Agency for Research
on Cancer: Lyon, France, 2013.

2. Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.C.; Webster, K.; Ohgaki, H.;
Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of
the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [CrossRef] [PubMed]

3. Sanai, M.; Berger, M.S. Operative techniques for gliomas and the value of extent of resection. Neurotherapeutics
2009, 6, 478–486. [CrossRef] [PubMed]

4. Fabelo, H.; Ortega, S.; Kabwama, S.; Callicó, G.M.; Bulters, D.; Szolna, A.; Pineiro, J.F.; Sarmiento, R.
HELICoiD project: A new use of hyperspectral imaging for brain cancer detection in real-time during
neurosurgical operations. Proc. SPIE Int. Soc. Opt. Eng. 2016, 12, 9860. [CrossRef]

5. Fabelo, H.; Ortega, S.; Lazcano, R.; Madronal, D.; Callicó, G.M.; Juárez, E.; Salvador, R.; Bulters, D.;
Bulstrode, H.; Szolna, A.; et al. An intraoperative visualization system using hyperspectral imaging to aid in
brain tumor delineation. Sensors 2018, 18, 430. [CrossRef] [PubMed]

6. Chang, C.-I. Hyperspectral Data Processing: Algorithm Design and Analysis; John Wiley & Sons: Hoboken, NJ,
USA, 2013; ISBN 978-0-471-69056-6.

7. Fabelo, H.; Ortega, S.; Ravi, D.; Kiran, B.R.; Sosa, C.; Bulters, D.; Callicó, G.M.; Bulstrode, H.; Szolna, A.;
Pineiro, J.F.; Kabwama, S.; et al. Spatio-spectral classification of hyperspectral images for brain cancer
detection during surgical operations. PLoS ONE 2018, 13, e0193721. [CrossRef] [PubMed]

8. Torti, E.; Fontanella, A.; Florimbi, G.; Leporati, F.; Fabelo, H.; Ortega, S.; Callicó, G.M. Acceleration of
brain cancer detection algorithms during surgery procedures using GPUs. Microprocess. Microsyst. 2018, 61,
171–178. [CrossRef]

9. Florimbi, G.; Fabelo, H.; Torti, E.; Lazcano, R.; Madronal, D.; Ortega, S.; Salvador, R.; Leporati, F.; Danese, G.;
Báez-Quevedo, A.; et al. Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the
Real-Time Classification of Human Brain Tumor in Hyperspectral Images. Sensors 2018, 18, 2314. [CrossRef]
[PubMed]

10. Lazcano, R.; Madronal, D.; Salvador, R.; Desnos, K.; Pelcat, M.; Guerra, R.; Fabelo, H.; Ortega, S.; Lopez, S.;
Callico, G.M.; et al. Porting a PCA-based hyperspectral image dimensionality reduction algorithm for brain
cancer detection on a manycore architecture. J. Syst. Archit. 2017, 77, 101–111. [CrossRef]

11. Madronal, D.; Lazcano, R.; Salvador, R.; Fabelo, H.; Ortega, S.; Callico, G.M.; Juarez, E.; Sanz, C. SVM-based
real-time hyperspectral image classifier on a manycore architecture. J. Syst. Archit. 2017, 80, 30–40. [CrossRef]

http://dx.doi.org/10.1007/s00401-016-1545-1
http://www.ncbi.nlm.nih.gov/pubmed/27157931
http://dx.doi.org/10.1016/j.nurt.2009.04.005
http://www.ncbi.nlm.nih.gov/pubmed/19560738
http://dx.doi.org/10.1117/12.2223075
http://dx.doi.org/10.3390/s18020430
http://www.ncbi.nlm.nih.gov/pubmed/29389893
http://dx.doi.org/10.1371/journal.pone.0193721
http://www.ncbi.nlm.nih.gov/pubmed/29554126
http://dx.doi.org/10.1016/j.micpro.2018.06.005
http://dx.doi.org/10.3390/s18072314
http://www.ncbi.nlm.nih.gov/pubmed/30018216
http://dx.doi.org/10.1016/j.sysarc.2017.05.001
http://dx.doi.org/10.1016/j.sysarc.2017.08.002

Electronics 2018, 7, 283 19 of 19

12. Domingo, R.; Salvador, R.; Fabelo, H.; Madronal, D.; Ortega, S.; Lazcano, R.; Juarez, E.; Callico, G.M.;
Sanz, C. High-level design using Intel FPGA OpenCL: A hyperspectral imaging spatial-spectral classifier.
In Proceedings of the 2017 12th International Symposium on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), Madrid, Spain, 12–14 July 2017; pp. 1–8. [CrossRef]

13. Fontanella, A.; Marenzi, E.; Torti, E.; Danese, G.; Plaza, A.; Leporati, F. A suite of parallel algorithms for
efficient band selection from hyperspectral images. J. Real-Time Image Process. 2018, 1–17. [CrossRef]

14. Marenzi, E.; Carrus, A.; Danese, G.; Leporati, F.; Callicó, G.M. Efficient Parallelization of Motion Estimation
for Super-Resolution. In Proceedings of the 2017 25th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP), St. Petersburg, Russia, 6–8 March 2017; pp. 274–277.
[CrossRef]

15. Lopez-Fandino, J.; Heras, D.B.; Arguello, F.; Dalla Mura, M. GPU Framework for Change Detection in
Multitemporal Hyperspectral Images. Int. J. Parallel Program. 2017, 1–21. [CrossRef]

16. Florimbi, G.; Torti, E.; Danese, G.; Leporati, F. High Performant Simulations of Cerebellar Golgi Cells
Activity. In Proceedings of the 2017 25th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), St. Petersburg, Russia, 6–8 March 2017; pp. 527–534. [CrossRef]

17. Feng, X.; Jin, H.; Zheng, R.; Zhu, L.; Dai, W. Accelerating Smith-Waterman Alignment of Species-Based
Protein Sequences on GPU. Int. J. Parallel Program. 2015, 43, 359–380. [CrossRef]

18. Baramkar, P.P.; Kulkarni, D.B. Review for K-Means On Graphics Processing Units (GPU). Int. J. Eng.
Res. Technol. 2014, 3, 1911–1914.

19. Zechner, M.; Granitzer, M. K-Means on the Graphics Processor: Design and Experimental Analysis. Int. J.
Adv. Syst. Meas. 2009, 2, 224–235. [CrossRef]

20. Hong-tao, B.; Li-li, H.; Dan-tong, O.; Zhan-shan, L.; He, L. K-Means on Commodity GPUs with CUDA.
In Proceedings of the WRI World Congress on Computer Science and Information Engineering, Los Angeles,
CA, USA, 31 March–2 April 2009; pp. 651–655. [CrossRef]

21. Fakhi, H.; Bouattane, O.; Youssfi, M.; Hassan, O. New optimized GPU version of the k-means algorithm
for large-sized image segmentation. In Proceedings of the Intelligent Systems and Computer Vision, Fez,
Morocco, 17–19 April 2017; pp. 1–6. [CrossRef]

22. Li, Y.; Zhao, K.; Chu, X.; Liu, J. Speeding up k-Means algorithm by GPUs. J. Comput. Syst. Sci. 2013, 79,
216–229. [CrossRef]

23. Baydoun, M.; Dawi, M.; Ghaziri, H. Enhanced parallel implementation of the K-Means clustering algorithm.
In Proceedings of the 3rd International Conference on Advances in Computational Tools for Engineering
Applications (ACTEA), Beirut, Lebanon, 13–15 July 2016; pp. 7–11. [CrossRef]

24. Saveetha, V.; Sophia, S. Optimal Tabu K-Means Clustering Using Massively Parallel Architecture. J. Circuits
Syst. Comput. 2018, In press. [CrossRef]

25. Cuomo, S.; De Angelis, V.; Farina, G.; Marcellino, L.; Toraldo, G. A GPU-accelerated parallel K-means
algorithm. Comput. Electr. Eng. 2017, 1–13. [CrossRef]

26. Lutz, C.; Bress, S.; Rabl, T.; Zeuch, S.; Markl, V. Efficient k-means on GPUs. In Proceedings of the 14th
International Workshop on Data Management on New Hardware, Huston, ID, USA, 11 June 2018. [CrossRef]

27. Yang, L.; Chiu, S.C.; Liao, W.K.; Thomas, M.A. High Performance Data Clustering: A Comparative Analysis
of Performance for GPU, RASC, MPI, and OpenMP Implementations. J. Supercomput. 2014, 70, 284–300.
[CrossRef] [PubMed]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ReCoSoC.2017.8016152
http://dx.doi.org/10.1007/s11554-018-0765-0
http://dx.doi.org/10.1109/PDP.2017.64
http://dx.doi.org/10.1007/s10766-017-0547-5
http://dx.doi.org/10.1109/PDP.2017.91
http://dx.doi.org/10.1007/s10766-013-0284-3
http://dx.doi.org/10.1016/j.jcss.2012.05.004
http://dx.doi.org/10.1109/CSIE.2009.491
http://dx.doi.org/10.1109/ISACV.2017.8054924
http://dx.doi.org/10.1016/j.jcss.2012.05.004
http://dx.doi.org/10.1109/ACTEA.2016.7560102
http://dx.doi.org/10.1142/S0218126618501992
http://dx.doi.org/10.1016/j.compeleceng.2017.12.002
http://dx.doi.org/10.1145/3211922.3211925.
http://dx.doi.org/10.1007/s11227-013-0906-y
http://www.ncbi.nlm.nih.gov/pubmed/25309040
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	K-Means Algorithm for Hyperspectral Images
	Parallel K-Means Implementations
	Serial Code Profiling
	OpenMP Algorithms
	CUDA Algorithms
	OpenCL Algorithms

	Experimental Results and Discussion
	OpenMP Performance Evaluation
	CUDA Performance Evaluation
	OpenCL Performance Evaluation
	Comparisons and Discussion

	Conclusions
	References

